Analysing longitudinal data with hierarchical linear models and identifying subgroups in prevention research

Workshop at 6. EUSPR, Ljubliana, October 21, 2015

Ferdinand Keller Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm

Time schedule (optional)

9:30 – 10:40	 Introductory examples and basic concepts of multi-level modeling of Cross-sectional data Longitudinal data Analysis of longitudinal data with multi-level models Differences to ANOVAR Some mixed models
10:40 - 11:00	*** Coffee break ***
11:00 - 12:00	 Applications and 'how to do it' in SAS and SPSS Interpretation of results and critical issues
12:00 - 13:00	*** Lunch ***
13:00 – 14:00	 Introduction to growth mixture models (GMM) Basic concepts of mixture analysis Mixture analysis with longitudinal data Applications and 'how to do it' in M<i>plus</i>
14:00 - 14:20	*** Coffee break ***
14:20 - 16:00	- Potential pitfalls, caveats, 'reality' of latent classes General discussion, questions, literature and software

Overview

- 1) Standard approaches to analyse longitudinal data
- 2) Why multi-level analysis?
- 3) Hierarchical Linear Model (HLM), multi-level model
- 4) Latent class growth and growth mixture models
- 5) Optional: other approaches (survival anaylsis, time series analysis)

Research Questions about Change

- What is the *nature* of change over time, on average? For example, is change linear, curvilinear, nonlinear, discontinuous, etc.?
- How do individuals vary with respect to change over time? For example, do all individuals have linear change but vary in terms of the magnitude of their change coefficients? Or, do individuals differ in terms of the nature of change, e.g., do some individual have linear change while others have curvilinear change?
- What are the effects of risk and protective factors and the intervention on individual differences in the change process?
- How are individual differences in the change process predictive of subsequent or distal outcomes?

from: Masyn & Muthen

Overview: methods for longitudinal data I

1) Standard approaches (well known (more or less))

Regression analysis:

multiple (example: prediction of "outcome"-values) logistic (example: prediction of "outcome"-groups, e.g., intervention successful vs. not)

Analysis of Variance with repeated measures (ANOVAR)

compare mean values of group/subgroups over time

MANOVA

compare mean values of group/subgroups over time and model the covariance/correlation structure over time

Overview: methods for longitudinal data II

3) Hierarchical linear model (HLM), multi-level-model

cross-sectional: e.g. students "nested" in classes; persons living in neighbourhoods; lenght of stay in hospital (patients on wards, or treated by same therapist); in general: take into account clustering

longitudinal: growth curves; random coefficients models

4) Latent class growth models, growth mixture models (aim: identify subgroups with different courses)

growth mixture model (GMM): e.g. trajectories of binge drinking in adolescents; course of delinquency; different response to treatment of depression or prevention intervention

latent class growth model (Nagin et al.): special case of GMM (no within class variation)

2) Why multi-level analysis?

cross-sectional:

students "nested" in classes tend to be more similar to each other than to students in other classes;

analogue:

persons living in the same neighbourhoods; patients treated in the same hospital (or ward, or therapist);

in general: variances are smaller than without clustering.

thus: take into account clustering for evaluation of effects

Why multi-level: Example 1a (work satisfaction and responsibility)

Firma	Verantwortung (X)	Arbeitszufriedenheit (Y)		
A $(i = 1)$	$x_{11} = 1$	$y_{11} = 8$		
	$x_{21} = 2$	$y_{21} = 7$		
	$x_{31} = 2$	$y_{31} = 8$		
	$x_{41} = 3$	$y_{41} = 9$		
	$x_{51} = 5$	$y_{51} = 9$		
B (<i>i</i> = 2)	$x_{12} = 4$	$y_{12} = 4$		
	$x_{22} = 4$	$y_{22} = 6$		
	$x_{32} = 5$	$y_{32} = 6$		
	$x_{42} = 6$	$y_{42} = 7$		
and the state of the	$x_{52} = 6$	$y_{52} = 8$		
C (i = 3)	$x_{13} = 5$	$y_{13} = 2$		
	$x_{23} = 8$	$y_{23} = 1$		
	$x_{33} = 8$	$y_{33} = 2$		
	$x_{43} = 8$	$y_{43} = 3$		
	$x_{53} = 9$	$v_{53} = 3$		

Tabelle 19.1 Datenbeispiel für den Zusammenhang zwischen Verantwortung und Arbeitszufriedenheit

From: Eid, Gollwitzer & Schmitt (2010): Statistik und Forschungsmethoden. Beltz-Verlag

Why multi-level: Example 1b (work satisfaction and responsibility)

From: Eid, Gollwitzer & Schmitt (2010): Statistik und Forschungsmethoden. Beltz-Verlag

Why multi-level: Example 1c (work satisfaction and responsibility)

Abbildung 19.2 Streudiagramm für das Datenbeispiel aus Tabelle 19.1: Regression für jede Firma getrennt

From: Eid, Gollwitzer & Schmitt (2010): Statistik und Forschungsmethoden. Beltz-Verlag

Why multi-level: Example 1d (work satisfaction and responsibility)

- a) Decrease of satisfaction with increasing responsibility?
- b) Positive correlation within each company?
- Ignoring the hierarchical structure (level 2-units) leads to ecological fallacy; here: Effect on level-2 (company) interpreted on level-1 (individuals)
- Problem in this example: differences between companies are big, and explain most of the variance

Why multi-level? Example 2 a (blood pressure in neighborhoods (simulated data!)

J Epidemiol Community Health 2005;59:443-449. doi: 10.1136/jech.2004.023473

Why multi-level? Example 2 b (blood pressure in neighborhoods (simulated data!)

Figure 3 Single level individual information. This figure represents the distribution of individual SBP in the population of the city when we have only single level individual based information. The fact that people are grouped within neighbourhoods is neglected, as we only have individual level data. In this figure the length of the thin vertical line from the black spot to the thick horizontal line represents the individual differences in blood pressure compared with whole aity mean (the individual level residuals). The individual variance in single level individual studies is an average summary of these differences. In single level individual analysis we consider al information as if it were at the individual level neglecting possible neighbourhood components.

A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon

Juan Merlo, Basile Chaix, Min Yang, John Lynch, Lennart Råstam

.....

J Epidemiol Community Health 2005;59:443-449. doi: 10.1136/jech.2004.023473

Why multi-level? Example 2 c (blood pressure in neighborhoods (simulated data!)

Figure 4 Single level ecological information. In this figure all individual SBP values are aggregated at the neighbourhood level to obtain the neighbourhood mean. We can distinguish differences between the mean blood pressure of each neighbourhood and the mean blood pressure of the whole city (the neighbourhood residuals). These residuals are represented by thick black horizontal lines at the top of a pillow. The neighbourhood variance is a summary of the differences between neighbourhoods. We are unable to observe differences between people (variation in blood pressure within neighbourhoods). In single level ecological analysis we consider all information as if it were at the neighbourhood level neglecting individual components.

A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon

Juan Merlo, Basile Chaix, Min Yang, John Lynch, Lennart Råstam

J Epidemiol Community Health 2005;59:443-449. doi: 10.1136/jech.2004.023473

Why multi-level? Example 2 d (blood pressure in neighborhoods (simulated data!)

Figure 1 Multilevel information. In this figure the neighbourhood residuals are represented by the length of the pillows between the city SBP mean, represented by a grey colour, and the neighbourhood SBP means represented by thick black horizontal lines. The individual residuals are represented by the length of the vertical lines between the neighbourhood means and the variance individual SBP values represented by black circles at the top of thin lines. In this figure we do not have any explanatory variable (that is, this figure corresponds to an "empty" model) as we are only interested in analysing how individual blood pressure differences are partitioned in a variability that exists between people from the same neighbourhood and a variability that exists between neighbourhoods. In this figure we can imagine that the neighbourhood means (short thick lines) pull up or pull down all the individual SBP values belonging to the same neighbourhood, even if individual level variability remains within neighbourhoods. The mathematical expression of the intraclass correlation can be visually understood in figure 1. Figure 1 is a graphic combination of figures 3 and 4.

A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon

.....

Juan Merlo, Basile Chaix, Min Yang, John Lynch, Lennart Råstam

Why multi-level? Example 2 e (blood pressure in neighborhoods (simulated data!)

How much of the variance is explained by level 2 (neighborhood)? Intraclass-coefficient (ICC) = Var(Neighb.) / (Var(total) = 0.08

Interpretation: 8% of the variance is explained by level 2

Why multi-level? Conclusions

- 1) Ignoring cluster effects leads to ,ecological fallacy' (the more, the higher the ICC)
 - **hence**: take account of the hierarchical structure and of interpretation on what level.
 - Example work satisfaction: explaining level 2 variable, e.g. financial situation of the company, was ignored
 - **also possible**: Interaction level 1 and level 2 ("cross-level") example: "big fish little pond"
- 2) Variances are underestimated (depending on ICC), i.e., standard errors in the denominator of a test statistic are "too small", resulting in "too many" significant effects.
- 3) Power analysis: less power in clustered designs, i.e., sample size must be increased adequately (use "variance inflation factor" or via simulations)

Multi-level in longitudinal designs

Transfer from cross-sectional to longitudinal. Now:

level 1: measurement occasions of a person over time

level 2: person

TABLE 6.1

Examples of Longitudinal Data in Different Research Settings

		Research Setting					
Level of Data		Substance Abuse	Business	Autism Research			
	Subject variable (random factor)	College	Company	Child			
Subject (Level 2)	Covariates	Geographic region, public/private, rural/urban	Industry, geographic region	Gender, baseline language level			
	Time variable	Year	Quarter	Age			
Time (Level 1)	Dependent variable	Percent of students who use marijuana during each academic year	Stock value in each quarter	Socialization score at each age			
	Time-varying covariates	School ranking, cost of tuition	Quarterly sales, workforce size	Amount of therapy received			

From: West/Welch/Galecki (2007). Linear Mixed Models: A practical guide using statistical software. Chapman & Hall

Workshop at 6. EUSPR, Ferdinand Keller slide: 18

Example: Treatment of depression (Hautzinger / deJong)

(Z. Klin. Psych. 1996)

Study:

Adult depression treatment study (Hautzinger/deJong)

Sample size: n=304

Phase T2 is treatment period: 8 weeks

primary outcome: Inventory of depressive symptoms (IDS), assessed weekly (t=8)

Treatment: medication vs. CBT vs. combination

Therapy study Hautzinger/de Jong (Raw data, CBT group only)

KVT-Gruppe – originale Verlaufsdaten

Aus: Keller, F. (2003): Analyse von Längsschnittdaten: Auswertungsmöglichkeiten mit hierarchischen linearen Modellen. Zeitschrift für Klinische Psychologie und Psychotherapie, 32, 51-61

Limitations of ANOVAR

1) "classical" ANOVAR:

many time points

missing values (--> listwise deletion)

heterogeneity of variances and correlations (correction by Greenhouse/Geisser, Huynh/Feldt)

2) In general:

different number of time points per person unequal distances between time points

 \rightarrow Idea: use person-specific regression lines

Therapy study Hautzinger/de Jong (ordinary regression lines, estimated separately for each person)

KVT-Gruppe – Regressionsgerade pro Person

Aus: Keller, F. (2003): Analyse von Längsschnittdaten: Auswertungsmöglichkeiten mit hierarchischen linearen Modellen. Zeitschrift für Klinische Psychologie und Psychotherapie, 32, 51-61

Therapy study Hautzinger/de Jong (interpretation and conclusion)

Result: Separate regression lines not helpful, seem "erratic" in some cases

Expectation for model building and estimation:

- each person belongs to a (sub-)group and their course should be considered and be part of the estimation
- persons with few time points and "unreliable" course should get less weight

Some practical questions for using HLM

What structure for data file?

Person-level ("wide" format) Person-period ("long" format)

What software program?

see Singer-Folie (Chap 3, slide 11)

What sample size is needed?

How to treat missing data? See later

Fitting the multilevel model for change to data Three general types of software options (whose numbers are increasing over time)

Standard structure (person-level data set) ("wide")

					Tł	ne SAS	S Syst	cem				
											В	Н
			I	I	I	I	I	I	I	I	D	А
			D	D	D	D	D	D	D	D	I	М
	P		S	S	S	S	S	S	S	S	_	_
	A	m	Т	Т	Т	Т	Т	Т	Т	Т	Е	Е
0	Т	i	2	2	2	2	2	2	2	2	n	n
b	Ν	S	_	_	_	_	_	_	_	_	t	t
S	R	S	1	2	3	4	5	б	7	8	1	1
1	1101	1	35	26	23	30		23	24	21	14	9
2	1102	0	41	34	19	16	12	11	7	1	3	5
3	1103	0	39	19	25	20	20	18	17	18	12	•
4	1104	1	30	34	21	15	9	•	6	10	4	5
5	1105	0	21	20	17	14	11	11	7	7	7	5
6	1106	1	34	42	30	26	24	•	21	16	12	10
7	1107	6	29	21	•	•	•			•	•	
8	1108	0	24	29	19	23	14	10	9	5	6	б
9	1110	0	25	37	32	22	26	23	35	34	24	19

Structure required by most statistical packages ("long") (person-period data set)

						The	SAS	System
					В	Н		
					D	A		
				I	I	М		
		P	W	D	_	_		
		A	0	S	Е	Е		
0		Т	С	_	n	n		
b		Ν	h	t	t	t		
S		R	е	2	1	1		
	1	1101	1	35	14	9		
	2	1101	2	26	14	9		
	3	1101	3	23	14	9		
	4	1101	4	30	14	9		
	5	1101	6	23	14	9		
	6	1101	7	24	14	9		
	7	1101	8	21	14	9		
	8	1102	1	41	3	5		
	9	1102	2	34	3	5		
1	0	1102	3	19	3	5		
1	1	1102	4	16	3	5		
	usw.							

Programmsyntax (SPSS): long to wide

get file 'c:\kidslw.sav'. list famid birth age.

FAMID	BIRTI	H AGE
1.00	1.00	9.00
1.00	2.00	6.00
1.00	3.00	3.00
2.00	1.00	8.00
2.00	2.00	6.00
2.00	3.00	2.00
3.00	1.00	6.00
3.00	2.00	4.00
3.00	3.00	2.00

Number of cases read: 9 Number of cases listed: 9

casestovars /id=famid /index = birth /drop id kidname wt sex. list. FAMID AGE.1.00 AGE.2.00 AGE.3.00

1.00	9.00	6.00	3.00
2.00	8.00	6.00	2.00
3.00	6.00	4.00	2.00

Number of cases read: 3 Number of cases listed: 3

A conceptual overview of the multilevel model for change Key idea: You're building linked statistical models at each of two levels of a hierarchy

<u>At level-1 (within person)</u> Model the *individual change trajectory*, which describes how each person's status depends on time

Example: Changes in alcohol use among teens (*data for 1 COA from Curran's study of 82 teens interviewed at 14, 15, and 16*) <u>At level-2 (between persons)</u>

Model inter-individual differences in change, which describe how features of the change trajectories vary across people

© Judith D. Singer & John B. Willett, Harvard Graduate School of Education, Longitudinal Research, slide 30

Programmsyntax (SAS Proc MIXED)

```
Syntax (SAS):
```

```
PROC MIXED DATA=ids;
```

MODEL idst2 = week / solution; * course of all persons; RANDOM intercept week /SUB=patnr TYPE=UN G GCorr; RUN;

```
PROC MIXED DATA=ids covtest;
```

CLASS treat; MODEL idst2 = treat week treat*week / solution; * time effect + fixed effect treatment; RANDOM intercept week /SUB=pathr TYPE=UN G GCorr;

Results of fitting Model B (the unconditional growth model) to data

Results of fitting Model C (the uncontrolled effects of COA) to data

 $Y_{ij} = \pi_{0i} + \pi_{1i} (AGE - 14)_{ij} + \varepsilon_{ij} \text{, where } \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^{2})$ $\pi_{0i} = \gamma_{00} + \gamma_{01}COA_{i} + \zeta_{0i} \text{ where } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{0}^{2} & \sigma_{01} \\ \sigma_{10} & \sigma_{1}^{2} \end{bmatrix} \end{pmatrix}$ $Y_{ij} = \gamma_{00} + \gamma_{01}COA_{i} + \gamma_{10} (AGE - 14)_{ij} + \gamma_{11}COA_{i} * (AGE - 14)_{ij}$ $+ [\zeta_{0i} + \zeta_{1i} (AGE - 14)_{ij} + \varepsilon_{ij}]$

> Parameter Model C **Fixed Effects** Initial status. 0.316*** Intercept **Y**00 (0.131) π_{0i} COA 0.743*** **%**1 (0.195)Rate of Intercept 0.293 * * *Yio change, π_{2i} (0.084)COA -0.049**%**11 (0.125)Variance Components σ_{E}^{2} 0.337*** Within-Level 1 (0.053)person 0.488** In initial σ_0^2 Level 2 (0.128)status σ_1^2 0.151* In rate of (0.056)change -0.059Covariance σ_{01} (0.066)621.2 Deviance 637.2 AIC 656.5 BIC

proc mixed data=one method=ml covtest; class id; model alcuse = coa age_14 coa*age_14/solution; random intercept age_14/type=un subject=id;

Model C: Uncontrolled effects of COA The Mixed Procedure

		Cova	riance Para	ameter E	stimates					
				Standa	rd Z					
	Cov Parm	Subject	Estimate	Error	Valu	e PrZ				
	UN(1,1)	ID	0.4876	0.127	8 3.81	<.0001				
	UN(2,1)	ID	-0.05934	0.065	73 -0.90	0.3666				
	UN(2,2)	ID	0.1506	0.056	39 2.67	0.0038				
	Residual		0.3373	0.052	68 6.40	<.0001				
			Fit Sta	atistics						
	-2 Log Likelihood 621.2									
_	AIC (smal	ler is be	tter)	637.	2					
	AICC (sma	ller is b	etter)	637.	8					
	BIC (smal	ler is be	tter)	656.	5					
		So	lution for	Fixed E:	ffects					
			Standar	d						
	Effect	Estima	te Error	DF	t Value	Pr > t				
	Intercept	0.316	0 0.130	7 80	2.42	0.0179				
	COA	0.743	2 0.194	6 82	3.82	0.0003				
	AGE 14	0.293	0 0.084	23 80	3.48	0.0008				
	COA*AGE 1	4 -0 049	43 0 1 25	4 82	-0.39	0 6944				

 $\sim p < .10; * p < .05; ** p < .01; *** p < .001$

Syntax for SPSS (Procedure MIXED)

Mixed y with time ccovar /print=solution corb /fixed = time ccovar time*ccovar /random intercept time | subject(id) covtype(un).

There is also a good introduction by SPSS:

Linear Mixed-Effects Modeling in SPSS: An Introduction to the MIXED Procedure

Figure 45

Random coefficient models

In many situations, it is impossible to use a single regression line to describe the behavior of every individual. To account for possible variations between individuals, we can treat the regression coefficients as random variables. This type of model is therefore called the random coefficient model. We typically assume that the regression coefficients have normal distributions.

Random intercept, random slopes

Random intercept 1304.340

Random slope 1361.464

Random intercept and slope 1274.823

Other models and systematic overview

- a) Null model: variation in intercept? (= Cluster effect?)
- b) Time effect? (different means over time)
- c) Effect of covariate(s)?, e.g, treatment, intervention
- d) Variation in slopes? (add time as random effect)
- e) Interaction effects?, e.g., time x treatment
- Demonstrated with examples from Hox, J. (200x): Multilevel analysis techniques and applications, chap. 5

Syntax and resulting output via:

http://www.ats.ucla.edu/stat/sas/examples/mlm_ma_hox/chap5.htm

Exkurs: Influence of coding of time

Summary (so far)

Multi-level or hierarchical linear model (HLM)

a) cross-sectional: examples were:

individuals in companies; in neighborhoods; students in classes; children in families;

 b) longitudinal: random coefficients models estimate person specific regression lines (linear, quadratic) while taking into account group intercepts and slopes

Person specific coefficients (intercept, slope) not of much interest (usually), but their variances

Interpretation (mostly) of fixed effects (treatment, time course, etc.)

Outlook: Models with three levels

Technically not very difficult. But may be difficult to estimate and interpret.

Multi-level in longitudinal designs: three levels

TABLE 7.1

Examples of Clustered Longitudinal Data in Different Research Settings

		Research Setting				
Level of Data		Environment	Education	Dentistry		
Cluster of Units	Cluster ID variable (random factor)	Plot	Classroom	Patient		
(Level 3)	Covariates	ovariates Soil minerals, tree T crown density in the e plot c		Gender, age		
	Unit of Analysis ID	Tree	Student	Tooth		
Unit of Analysis	variable (random factor)					
(Level 2)	Covariates	Tree size	Gender, age,	Treatment, tooth		
			baseline score	type		
	Time variable	Week	Marking period	Month		
Time	Dependent variable	Oxygen yield	Test score	Gingival crevicular fluid (GCF)		
(Level 1)	Time-varying covariates	Sunlight exposure, precipitation	Attendance	Frequency of tooth brushing		
	Pa	tient 1	c đ	lusters .evel 3)		

From: West/Welch/Galecki (2007). Linear Mixed Models: A practical guide using statistical software. Chapman & Hall

Research Questions about Change

- What is the *nature* of change over time, on average? For example, is change linear, curvilinear, nonlinear, discontinuous, etc.?
- How do individuals vary with respect to change over time? For example, do all individuals have linear change but vary in terms of the magnitude of their change coefficients? Or, do individuals differ in terms of the nature of change, e.g., do some individual have linear change while others have curvilinear change?
- What are the effects of risk and protective factors and the intervention on individual differences in the change process?
- How are individual differences in the change process predictive of subsequent or distal outcomes?
- How does the change process influence (mediate/moderate) the intervention effect on the distal outcomes?

from: Masyn & Muthen

Overview: methods for longitudinal data II

3) Hierarchical linear model (HLM), multi-level-model

cross-sectional: e.g. classes "nested" in schools; persons living in neighbourhoods; lenght of stay in hospital (patients on wards); in general: take into account clustering

longitudinal: growth curves; random coefficients models

4) Latent class growth models, growth mixture models (aim: identify subgroups with different courses)

growth mixture model (GMM): e.g. trajectories of binge drinking in adolescents; course of delinquency; different response to treatment of depression

latent class growth model (Nagin et al.): special case of GMM (no within class variation, SAS Proc TRAJ)

From antisocial behaviour/delinquency research:

Latent class growth model **(LCGA)** (Nagin, Tremblay, Jones): Individual growth trajectories within a class are homogeneous

From latent variable modelling:

Growth mixture modelling (**GMM**) (Muthen): Allows for within-class variation (and freeing/fixing of other parameters)

• Heterogeneity in growth is captured through trajectory classes (categorical latent variable) **and** random effects *within* class.

General idea of mixture modeling

Fig. 1. Estimated prevalences (expected mean) of the respiratory symptoms in, and estimated class sizes (in brackets) of the seven phenotypes identified by latent class analysis.

Weinmayr/Keller/Kleiner et al. (2013). Asthma phenotypes identified by latent class analysis in the ISAAC phase II Spain Study. *Clinical & Experimental Allergy, 43,* 223-232.

Workshop at 6. EUSPR, Ferdinand Keller slide: 45

Survey Strate

Single population vs. unobserved subpopulations

Growth curves as random-effects models:

Growth curve parameters, e.g. intercept and slope, vary across individuals.

However,

- a single population with common parameters is assumed, or
- subgroups are known, e.g. treatment condition, gender...

Growth mixture modelling:

allows for differences in growth parameters across **unobserved subpopulations**, resulting in separate growth models for each subpopulation (latent class).

Jones, Nagin / Group-Based Trajectory Modeling 547

Advances in Group-Based Trajectory Modeling and an SAS Procedure for Estimating Them Bobby L. Jones and Daniel S. Nagin Sociological Methods Research 2007; 35; 542

Latent Class Growth model: Example syntax in Mplus

TITLE: course of IDS over 8 weeks, 7 classes, no random effects; DATA: FILE IS ids.dat;

VARIABLE: NAMES ARE STUDIE THGRUPPE PATNR BDIT1SUM BDIT3SUM HA21SUT3 y1 y2 y3 y4 y5 y6 y7 y8 ; USEVAR = y1-y8; IDVARIABLE=patnr; MISSING ARE ALL (999); CLASSES=C(7);

ANALYSIS: TYPE=Mixture missing; estimator=ML;

MODEL:

%OVERALL%

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7; i@0; s@0; q@0; ! Set variances to zero, yields LCGA model ;

OUTPUT: RESIDUAL stand tech8; PLOT: Type is plot1 plot2 plot3; series = y1-y8 (s);

Growth mixture model: Programmsyntax in Mplus

TITLE: course of IDS, linear and quadratic, 3 classes, with random effects; DATA: FILE IS ids.dat;

VARIABLE: NAMES ARE STUDIE THGRUPPE PATNR BDIT1SUM BDIT3SUM HA21SUT3 y1 y2 y3 y4 y5 y6 y7 y8 ; USEVAR = y1-y8; IDVARIABLE=patnr; MISSING ARE ALL (999); CLASSES=C(3);

ANALYSIS: TYPE=Mixture missing; estimator=ML;

MODEL:

%OVERALL%

i s q | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7; !i-q@0; ! yields LCGA model, but commented out here ;

OUTPUT: RESIDUAL stand tech8; PLOT: Type is plot1 plot2 plot3; series = y1-y8 (s);

Growth mixture model: Programmsyntax in Mplus

TITLE: course of IDS, linear and quadratic, 4 classes, with random effects; DATA: FILE IS ids.dat;

VARIABLE: NAMES ARE STUDIE THGRUPPE PATNR BDIT1SUM BDIT3SUM HA21SUT3 y1 y2 y3 y4 y5 y6 y7 y8 ; USEVAR = y1-y8; IDVARIABLE=patnr; MISSING ARE ALL (999); CLASSES=C(4);

ANALYSIS: TYPE=Mixture missing; estimator=ML; STARTS = 500 50;

MODEL:

%OVERALL%

isq|y1@0y2@1y3@2y4@3y5@4y6@5y7@6y8@7;

OUTPUT: RESIDUAL stand tech8; PLOT: Type is plot1 plot2 plot3; series = y1-y8 (s); SAVEDATA: FILE is c:\mplus\idst8c4_cprob; save=cprob;

How many classes?

"Problem":

number of classes is not a model parameter.

Several conceptual approaches are helpful / necessary

- fit criteria
- information criteria (IC), e.g. Bayesian IC (BIC), AIC
- parsimony, theoretical justification, clinical interpretability
- high membership probabilities, classes not too small
- (bootstrap) likelihood ratio tests

How many classes? Fit and information criteria for GMM with 3 – 5 classes

numb class	per of es	of Log Lik. # of Parameters AIC		AIC	BIC	ssaBIC	entropy
	3	-7441.8	25	14933.7	15026.6	14947.3	.804
	4	-7424.8	29	14907.6	15015.4	14923.4	.786
	5	-7415.4	33	14896.8	15019.5	14914.8	.788

Deciding on the number of classes...

WHAT TO KEEP TRACK OF...

- Log Likelihood value
- # of free parameters
- Model chi-square, df, p-value
- BIC
- Entropy
- LMR-LRT p-value (Tech11)
- BLRT p-value (Tech14)
- Smallest class count and proportion
- Lack of convergence
- Non-replicated Log Likelihood
- Non-positive definite information matrix, etc.

from: Masyn & Muthen

GMM, solution with 4 classes (Mplus)

GMM, solution with 4 classes (M*plus*) (class membership prob. and class attribution)

The SAS System

membership probabilities and modal class

Obs	patnr	probl	prob2	prob3	prob4	class
1	1101	0.001	0.000	0.446	0.552	4
2	1102	0.006	0.000	0.991	0.002	3
3	1103	0.000	0.000	0.871	0.129	3
4	1104	0.000	0.000	0.994	0.006	3
5	1105	0.000	0.000	0.997	0.003	3
6	1106	0.049	0.000	0.624	0.327	3
7	1107	0.006	0.029	0.856	0.109	3
8	1108	0.021	0.000	0.974	0.005	3
9	1110	0.000	0.000	0.050	0.950	4
10	1113	0.000	0.004	0.973	0.022	3
11	1114	0.000	0.000	0.996	0.004	3
12	1115	0.000	0.974	0.022	0.004	2
13	1116	0.000	0.000	1.000	0.000	3
14	1118	0.026	0.000	0.540	0.434	3
15	1119	0.000	0.000	0.999	0.001	3

Keller, F. & Hautzinger, M. (2007). Klassifikation von Verlaufskurven in der Depressionsbehandlung: Ein methodischer Beitrag. *Zeitschrift für Klinische Psychologie und Psychotherapie, 36,* 83-92

"Reality" of latent classes

Mixture of several classes or "simply" non-normal distribution?

 Discussion on overextraction of latent trajectory classes in 2003 in *Psychological Methods* (Bauer & Curran; Rindskopf; Muthen; and others; reply by Bauer/Curran)

Explaining example: BMI of 15 year old boys (from a presentation of Muthen, 2014, to PSMG (see at www.statmodel.com))

Kinder- und Jugendpsychiatrie/Psychotherapie Universitätsklinikum Ulm

Klinik für Kinder- und Jugendpsychiatrie / Psychotherapie des Universitätsklinikums Ulm

Steinhövelstraße 5 89075 Ulm

www.uniklinik-ulm.de/kjpp

Ärztlicher Direktor: Prof. Dr. Jörg M. Fegert

