

Excellent courses on statistics (multilevel, longitudinal) and IRT models; examples in SAS, Mplus (some with SPSS and Stata)

Recent Talks

and Workshops

New Position and Contact Information:

Research

Course

Materials

Lesa Hoffman, Ph.D. Email: Lesa@ku.edu

Home

CV

Associate Professor of Quantitative Methods within the Child Language Doctoral Program --- and ---

Associate Scientist and Scientific Director of the Research Design and Analysis Unit, Schiefelbusch Institute for Life Span Studies at the University of Kansas

Office: 3042 Dole

Office Phone: 785-864-0638 Office Hours Summer 2015:

by appointment

New Mailing Address:

Dole Human Development Center Room 3031 University of Kansas 1000 Sunnyside Avenue Lawrence, KS 66045-7561

Longitudinal Analysis

We are what we repeatedly do. Excellence, therefore, is not an act, but a habit. -Aristotle

Brief Biosketch: I received my Ph.D. in Psychology at the University of Kansas in 2003, and completed a post-doctoral fellowship at The Pennsylvania State University before joining the Department of Psychology at the University of Nebraska-Lincoln as an Assistant Professor in 2006 (and as Associate Professor in 2011). Most recently, as of August 2014 I am now the Scientific Director of the Research Design and Analysis (RDA) Unit of the Lifespan Institute and Associate Professor of

CLP 944: Lecture 5

Combination of fixed and random effects of time

Fixed and Random Effects of Time

(Note: The intercept is random in every figure)

No Fixed, No Random

Yes Fixed, No Random

No Fixed, Yes Random

Yes Fixed, Yes Random

SUPPLIES STATE OF STA

From: Lesa Hoffman: Course CLP 944 (available at: http://www.lesahoffman.com/CLP944/index.html)

Influence of coding of time

Table 5.5 Results for model 5 for different scalings of measurement occasion

Model	M5a: first occasion = 0	M5b: last occasion = 0	M5e: occasions centered
Fixed part	Coeff. (s.e.)	Coeff. (s.e.)	
Intercept	2.56 (.10)	3.07 (.09)	2.82 (.09)
Occasion	0.10 (.006)	0.10 (.006)	0.10 (.006)
Job status	-0.13 (.02)	-0.13 (.02)	-0.13(.02)
GPA highschl	0.09 (.03)	0.09 (.03)	0.09 (.03)
Gender	0.12 (.03)	0.12 (.03)	0.12(.03)
Random part			
σ_s^2	0.042 (.002)	0.042 (.002)	0.042 (.002)
σ_{u0}^2	0.038 (.006)	0.109 (.014)	0.050 (.006)
σ_{a1}^2	0.004 (.001)	0.004 (.001)	0.004 (.001)
σ_{a01}	-0.002 (.002)	0.017 (.003)	0.007 (.001)
r _{u01}	21	.82	.51
Deviance	170.1	170.1	170.1
AIC	188.1	188.1	188.1
BIC	233.9	233.9	233.9

From: Hox, Joop (2010): Multilevel analysis: Techniques and Applications. 2nd ed.

Principle of Empirical Bayes estimation

are close to the overall average. The statistical method used is called *empirical Bayes estimation*. Because of this shrinkage effect, empirical Bayes estimators are biased. However, they are usually more precise, a property that is often more useful than being unbiased (see Kendall, 1959).

The equation to form the empirical Bayes estimate of the intercepts is given by:

$$\hat{\beta}_{0j}^{EB} = \lambda_{i} \hat{\beta}_{0j}^{OLS} + (1 - \lambda_{i}) \gamma_{00}, \tag{2.14}$$

where λ_j is the reliability of the OLS estimate β_{0j}^{OLS} as an estimate of β_{0j} , which is given by the equation $\lambda_j = \sigma_{u_0}^2/(\sigma_{u_0}^2 + \sigma_e^2/n_j)$ (Raudenbush & Bryk, 2002), and γ_{00} is the overall intercept. The reliability λ_j is close to 1.0 when the group sizes are large and/or the variability of the intercepts across groups is large. In these cases, the overall estimate γ_{00} is not a good indicator of each group's intercept. If the group sizes are small and there is little variation across groups, the reliability λ_j is close to 0.0, and more

Syntax examples for SPSS Mixed Model

Table 1. Example of SPSS and SAS syntax

	corona and an
SPSS Mixed	GET FILE = 'C:/hsb12.sav' . MIXED mathach BY sector WITH meanses cses /METHOD = REML /PRINT = SOLUTION TESTCOV /FIXED = meanses sector cses meanses*cses sector*cses SSTYPE(3) /RANDOM = INTERCEPT cses SUBJECT(school) COVTYPE(UN).
SAS Proc Mixed	PROC MIXED DATA = hlmc.hsb12 COVTEST NOCLPRINT; CLASS school sector; MODEL mathach = meanses sector cses meanses*cses sector*cses / SOLUTION; RANDOM INTERCEPT cses / SUB=school; RUN;

1.	GET FILE = 'C:/hsb12.sav' .	Opens a data file.
2.	MIXED mathach BY sector WITH meanses cses	The procedure (MIXED), the outcome variable (mathach), and factor (BY) and/or covariates (WITH) are specified on the first line. Note: the SPSS approach applies traditional ANOVA terminology in that categorical predictors are referenced as 'Factor' and listed after the BY term; where continuous predictors are referred to as 'Covariate' and are listed after the WITH term.

From: John Painter: Designing Multilevel Models using SPSS 11.5 Mixed Model

Therapy study (Hautzinger/de Jong) (estimated regression lines with RRM)

KVT-Gruppe – geschätzte Verläufe mit random regression-Modell

Aus: Keller, F. (2003): Analyse von Längsschnittdaten: Auswertungsmöglichkeiten mit hierarchischen linearen Modellen. Zeitschrift für Klinische Psychologie und Psychotherapie, 32, 51-61

Syntax examples for SAS: model the dependency within-person

The structure of the within-person error covariance matrix is specified using a REPEATED statement. To fit the model in (11a) under the assumption that Σ is compound symmetric we write:

```
proc mixed noclprint covtest noitprint;
class id wave;
model y = time/s notest;
repeated wave/type=cs subject=id r;
```

Notice that I have added a second CLASS variable (WAVE) to indicate the time structured nature of the data within person and I have used WAVE on the REPEATED statement. WAVE differs from TIME in that WAVE is treated as a series of dummies, whereas TIME is treated as a continuous variable to yield the growth model. The variable specified on the REPEATED statement must be categorical (although it need not be equal interval). The TYPE=option is crucial, for it specifies the form of the within-person variance-covariance matrix. In addition to the compound symmetry specification (CS) shown here, other possibilities include UN (for unstructured) and AR(1) for autoregressive with a lag of one. The SUBJECT=ID tells SAS that there are to be separate blocks of this matrix, one for each subject. The R option asks SAS to print the R matrix.

Syntax examples for SAS: a (cross-sectional) model with 3 levels

The ideas presented in this paper can be easily extended to three-level (and higher-level models). In the case of "school-effects" analyses, the user must specify multiple RANDOM statements, with appropriate nesting specifications given in the SUB= option. For example, if you have data on students within teachers within schools, you could fit an unconditional means model with the syntax:

```
proc mixed noclprint covtest;
  class teacher school;
  model mathach = /solution;
  random intercept/sub=school;
  random intercept/sub=teacher(school);
```


From: Singer, J.D. (1998). Using SAS Proc Mixed to fit Multilevel Models.... J Educ Behav Statistics, 24, 323-355

Syntax examples for SAS: a (longitudinal) model with three levels

From: West/Welch/Galecki (2007)....., dentristy example

Klinik für Kinder- und Jugendpsychiatrie / Psychotherapie des Universitätsklinikums Ulm

Steinhövelstraße 5 89075 Ulm

www.uniklinik-ulm.de/kjpp

