Advances in Research on Participant Attrition from Prevention Intervention Studies

John W. Graham¹, Lauren E. Connell¹, & Michael L. Hecht²

The Prevention Research Center ¹Department of Biobehavioral Health ²Communication Arts & Sciences Penn State University

jgraham@psu.edu

EUSPR, Palma de Mallorca, Spain October 17, 2014

Causes of Missingness

Ignorable

- MCAR: Missing Completely At Random
- MAR: Missing At Random

Non-Ignorable

NMAR: Not Missing At Random

NMAR Causes

The recommended analysis methods (multiple imputation and FIML) assume missingness is MAR

- But what if the cause of missingness is not MAR?
- Should these methods be used when MAR assumptions not met?

YES! These Methods Work!

- It's not like other methods
 - where there are better methods when assumptions not met
- MI and ML methods work better than "old" methods (listwise deletion)
- Multiple causes of missingness
 Only small part of missingness may be NMAR

Conventional Wisdom

- One CAN know if MCAR holds
- One canNOT know whether missingness is MAR or NMAR
- Some truth to latter statement
- BUT with longitudinal data, there is much that CAN be known
- This paper shows how you can know

What if the cause of missingness is NMAR?

Problems with this statement

- <u>The</u> cause of missingness is <u>never</u> purely NMAR or MAR
- Better to think of MAR and NMAR as forming a continuum
- MAR vs NMAR <u>NOT</u> even the dimension of interest

MAR vs NMAR: What IS the Dimension of Interest?

How much ESTIMATION BIAS?

when cause of missingness cannot be included in the model

Bottom Line ...

 All missing data situations are partly MAR and partly NMAR

- Sometimes it matters ...
 - bias affects statistical conclusions
- Often it does not matter
 - bias has tolerably little effect on statistical conclusions

(Collins, Schafer, & Kam, Psych Methods, 2001)

Collins, Schafer, & Kam (2001; CSK) CSK Paradigm

- CSK study
- Graham et al. (2008; 2013)
- Example model of interest:

T → Y (Z)

Creating Missingness NMAR (Linear)

Create NMAR missing with IF statements:

if Z=1 then prob(Ymissing) = .20

- if Z=2 then prob(Ymissing) = .40
- if Z=3 then prob(Ymissing) = .60
- if Z=4 then prob(Ymissing) = .80

% missing=
average of
probabilities

50% missing

Quartiles

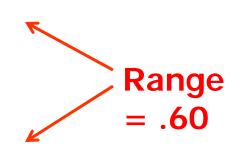
Creating Missingness Relevant Quantities

- % Missing
- r_{TY}
 treatment effect size

r_{ZR}

Creating Missingness Relevant Quantities: r_{ZR}

- Z = cause of missingness
- R = missingness (observed=1; missing=0)
- r_{zR} related to IF statements
 - if Z=1 then prob(Ymissing) = .20
 - if Z=2 then prob(Ymissing) = .40
 - if Z=3 then prob(Ymissing) = .60
 - if Z=4 then prob(Ymissing) = .80
- r_{zR} = range x constant*
 - with 50% missing, range = .60 means r_{ZR} = .45



Yardsticks for Measuring Bias

Standardized Bias < 40 is tolerable

(average parameter est) – (population value)

Standard Error (SE)

----- X 100

- |bias| < 40 considered small enough to be tolerable (Collins et al., 2001)
- t-value off by 0.4
- Relative Bias < .10 is tolerable</p>
 - parameter estimate off by 10% of true value
- Best when both rules are met

Research Results with NMAR Linear Missingness

- % missing
 - Less missing means less bias
- - Choose values from empirical research
 - $r_{TY} = .60$ unrealistic
 - $r_{TY} = .20$ has 75% less bias!
- r_{YZ}
 - r = .50 very realistic (with longitudinal data)
 - AND with effect size $(r_{TY}) = .20$, no scenario produces appreciable bias when $r_{YZ} = .50$

Research Results for r_{ZR} (range)

- r_{ZR} (range) more difficult
 Cannot be estimated directly
- But range = .60 very unusual in prevention research
- Range = .20 much more common

bottom line ...

- Scenario studied by CSK ...
 - Not a problem in typical prevention research
- But this scenario is only part of the story

A Taxonomy of Attrition Causes of Attrition on Y (main DV)

- Case 1: not T, not Y, not TY interaction (MCAR)
- Case 2: T only (MAR)
- Case 3: Y only (CSK scenario)
- Case 4: T and Y only
- Case 5: TY interaction only
- Case 6: T + TY interaction only
- Case 7: Y + TY interaction only
- Case 8: T + Y + TY interaction

Graham, J. W. (2012). *Chapter 1*

Studying the 8 Cases is Complex

- Design & Monte Carlo simulation utility
 Built around IF statements
 - IF Z=1 then prob(Ymissing) = .20
 - IF Z=2 then prob(Ymissing) = .40
 - IF Z=3 then prob(Ymissing) = .60

IF Z=4 then prob(Ymissing) = .80

Z is cause of missingness on Y

- IF statements for Cases 4-8
 - Treatment Group
 - IF Z=1 then prob(Ymissing) = .20
 - IF Z=2 then prob(Ymissing) = .40
 - IF Z=3 then prob(Ymissing) = .60
 - IF Z=4 then prob(Ymissing) = .80
 - Control Group
 - IF Z=1 then prob(Ymissing) = .10
 - IF Z=2 then prob(Ymissing) = .20
 - IF Z=3 then prob(Ymissing) = .30
 - IF Z=4 then prob(Ymissing) = .40

- IF statements for Cases 4-8
 - Treatment Group
 - IF Z=1 then prob(Ymissing) = .20
 - IF Z=2 then prob(Ymissing) = .40
 - IF Z=3 then prob(Ymissing) = .60
 - IF Z=4 then prob(Ymissing) = .80
 - Control Group
 - IF Z=1 then prob(Ymissing) = .10
 - IF Z=2 then prob(Ymissing) = .20
 - IF Z=3 then prob(Ymissing) = .30
 - IF Z=4 then prob(Ymissing) = .40

range = .60

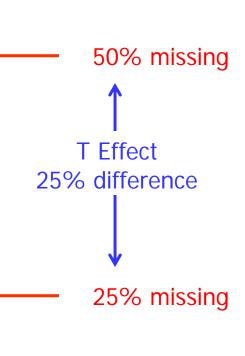
range = .30

Y Effect

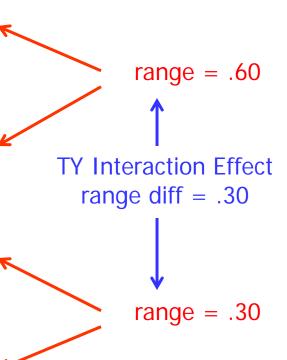
avg. range = .45

- IF statements for Cases 4-8
 - Treatment Group
 - IF Z=1 then prob(Ymissing) = .20
 - IF Z=2 then prob(Ymissing) = .40
 - IF Z=3 then prob(Ymissing) = .60
 - IF Z=4 then prob(Ymissing) = .80
 - Control Group
 - IF Z=1 then prob(Ymissing) = .10
 - IF Z=2 then prob(Ymissing) = .20
 - IF Z=3 then prob(Ymissing) = .30
 - IF Z=4 then prob(Ymissing) = .40

- IF statements for Cases 4-8
 - Treatment Group
 - IF Z=1 then prob(Ymissing) = .20
 - IF Z=2 then prob(Ymissing) = .40
 - IF Z=3 then prob(Ymissing) = .60
 - IF Z=4 then prob(Ymissing) = .80
 - Control Group
 - IF Z=1 then prob(Ymissing) = .10
 - IF Z=2 then prob(Ymissing) = .20
 - IF Z=3 then prob(Ymissing) = .30
 - IF Z=4 then prob(Ymissing) = .40



- IF statements for Cases 4-8
 - Treatment Group
 - IF Z=1 then prob(Ymissing) = .20
 - IF Z=2 then prob(Ymissing) = .40
 - IF Z=3 then prob(Ymissing) = .60
 - IF Z=4 then prob(Ymissing) = .80
 - Control Group
 - IF Z=1 then prob(Ymissing) = .10
 - IF Z=2 then prob(Ymissing) = .20
 - IF Z=3 then prob(Ymissing) = .30
 - IF Z=4 then prob(Ymissing) = .40



- Prompts for these quantities
- Writes SAS code
- Performs Monte Carlo Simulation
 with e.g., 1000 replications
- Writes out bias estimates
- All automatically

Using the Design/MCsim Utility with Empirical Data

- Drug Resistance Strategies Rural (DRSR)
 Project (*keepin' it REAL* program) (Colby, Hecht et al., 2013)
 - 39 Rural schools in Pennsylvania & Ohio
 - Implement in 7th grade
 - 4 waves of meaurement
 - (7a) 7th grade early (pretest)
 - (7b) 7th grade late (immediate posttest)
 - (8) 8th grade late
 - (9) 9th grade late

Estimating Various Quantities in Empirical Data

- % missing ... easy
- r_{TY} (effect size) ... pretty easy
- ... pretty easy r_{ZY}
- r_{7R} (range) ... more difficult
 - Must estimate r_{Drugs}, Missingness
 - Must use regressions with:
 - Drugs7a, Missingness9
 - Drugs7b, Missingness9
 - Drugs8, Missingness9

Estimating r_{zR} (range) in Empirical Data

- r_{ZR} is r_{Drugs}9, Missing9
- But r_{Drugs9,Missing9} is not estimable
- Must use proxy correlations:
 - Drugs7a, Missing9
 - Drugs7b, Missing9
 - Drugs8, Missing9

Estimation strategy outlined in my book

Regressions: Treatment Group

Model	R ²	R ² - Imp	R
drugs7a → Miss9	.0313	.0313	.177
+ drugs7b → Miss9	.0329	.0016	.040
+ drugs8 → Miss9	.0515	.0186	.136
drugs9 → Miss9			???

Regressions: Control Group

Model	R ²	R ² - Imp	R
drugs7a → Miss9	.0126	.0126	.112
+ drugs7b → Miss9	.0147	.0021	.046
+ drugs8 → Miss9	.0219	.0072	.085
drugs9 → Miss9			???

Predicting r_{drugs9,M9} (range)

Model		R	avg/diff
	Treatment	Control	
drugs7a → Miss9	.177	.112	
+drugs7b → Miss9	.040	.046	
+ drugs8 → Miss9	.136	.085	
Predicte	Predicted r _{drugs9,Miss9} (range)		
Use r _{Drugs8,Miss9}	.136 (.154)	.085 (.096)	.125/.058
Quadratic Trend	.465 (.526)	.229 (.259)	.393/.267
Linear Trend waves 2&3 only	.232 (.262)	.124 (.140)	.201/.122

Miss9 = missingness at 9th grade

Summary of Empirical Info

- %missing
 - average: 19.4% (.194) (%missing)
 - difference: 0.6% (.006) (T effect)
 - Y effect (range)
- Y effect (range) avg diff
 Linear Trend (2,3) .201 .122

Standardized and Relative Bias

	Standardized Bias	Relative Bias
Real data (19% missing, .006 T effect) Linear Trend (based on waves 2,3)	-24.0	.064

Standardized and Relative Bias

	Standardized Bias	Relative Bias
Real data (19% missing, .006 T effect) Linear Trend (based on waves 2,3)	-24.0	.064
Same, except 40% missing	-38.0	.116

Standardized and Relative Bias

	Standardized Bias	Relative Bias
Real data (19% missing, .006 T effect) Linear Trend (based on waves 2,3)	-24.0	.064
Same, except 40% missing	-38.0	.116
Same, except 40% missing + .10 T Effect	-46.0	.142

Auxiliary Variables

- Restores some power lost due to attrition
- Reduces attrition bias
 - Variables that predict attrition

Value of Attrition Related Auxiliary Variables

Predict missingness at 9th grade

- Drug use variables (from all three 7th-8th grade waves)
 - $R^2 = .037$
- Attrition-relevant Auxiliary Variables
 R² = .197

Standardized and Relative Bias with Attrition-relevant Auxiliary Variables

	Standardized Bias	Relative Bias
Real data Linear Trend (based on waves 2,3)	-24.0 → -22.2	.064 → .058

Standardized and Relative Bias with Attrition-relevant Auxiliary Variables

	Standardized Bias	Relative Bias
Real data Linear Trend (based on waves 2,3)	-24.0 → -22.2	.064 → .058
Same, except 40% missing	-38.0 → -29.1	.116 → .091

Standardized and Relative Bias with Attrition-relevant Auxiliary Variables

	Standardized Bias	Relative Bias
Real data Linear Trend (based on waves 2,3)	-24.0 → -22.2	.064 → .058
Same, except 40% missing	-38.0 → -29.1	.116 → .091
Same, except 40% missing + .10 T Effect	-46.0 → -30.1	.142 → .093

Conclusions

- Attrition CAN be bad for internal validity
- But often it's NOT nearly as bad as often feared
- Don't rush to conclusions, even with rather substantial attrition
- Examine evidence before drawing conclusions
 - We CAN know some things about bias
- Use MI and ML missing data procedures!
- Use good auxiliary variables to minimize impact of attrition

END Relevant Work:

- Graham, J.W., (2009). Missing data analysis: making it work in the real world. Annual Review of Psychology, 60, 549-576.
- Collins, L. M., Schafer, J. L., & Kam, с. м. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. *Psychological Methods*, *6*, 330_351.
- Hedeker, D., & Gibbons, R.D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies, *Psychological Methods*, 2, 64-78.
- Graham, J.W., (2012). Missing Data: Analysis and Design. New York: Springer.