

Cost-effectiveness of public health interventions – a new methodological approach

Inna Feldman and Anna Sarkadi

Inna.feldman@kbh.uu.se

Social Pediatrics Women's and Children's Health Uppsala University, Sweden **IF1** Inna Feldman, 27/06/2014

The goal of public health interventions:

- To move the distribution of life style risk factors in a healthier direction:
 - decrease disability-causing disease
 - improve quality of life in the population

- How to capture the health gains of a public health intervention?
- Can we provide a support for decision makers in allocating resources to public health interventions?

Aim

- To assess the effectiveness of a public health intervention using changes in the distribution curve of the targeted life style risk factor
- To estimate the cost-effectiveness of a hypothetical public health intervention tackling the life style risk factor

- Physical inactivity

The distribution curve as outcome measure!

$$\Delta = \int_{\lambda}^{\infty} \phi_1 - \int_{\lambda}^{\infty} \phi_2$$

 △ = % of the population that have moved from risky level

Sarkadi A, Sampaio F, Kelly MP, Feldman I. A novel approach used outcome distribution curves to estimate the population-level impact of a public health intervention. *J Clin Epidemiol.* 2014 Jul;67(7):785-92.

Risks, Health and Societal costs – RHS model*

 Simulates changes in incidence and related societal costs of several chronic diseases following changes in prevalence:

 Population: adults, 20-44, 45-64 and 65-84 years old, men and women

Feldman I. and Johansson P. The Swedish RHS-model (Risk factors, health and societal costs). Technical report. Available at http://www.hfsnatverket.se/lib/get/doc.php?id=15399bcf46ed95

Calculation methods

 Based on Relative risks (RR) and Potential Impact Fractions (PIF)*

 $PIF = \frac{(P*-P)(RR-1)}{P(RR-1)+1}$

• The incidence rate of the disease after change in the related risk factor (I*): $I^* = I \times (1 - PIF)$

Physical inactivity and diabetes:

A reduction in prevalence of <u>physical inactivity</u> from 22 % to 20 % results in a reduction in the incidence of diabetes by 2 %.

^{*} Morgenstern H, Bursic ES. A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. *J Community Health*. 1982; 7:292-309.

The risk factors and the diseases

	Obesity, BMI>30	Daily smoking	Physical inactivity	Risky consumpti on of alcohol	ICD-10 code
Diabetes type 2	X	X	X		E11
Ischemic heart disease	X	X	X		120, 124, 12
Stroke	х	X	X		I61, I63, I6
COPD		х	х		J40-J44
Depression	х	х	х	X	F32-F33
Hip fracture		х	X	X	S72.0-S72.
Liver cirrhosis				X	K70, K74
Epilepsy				X	G40- G41
Mental and behavioral disorders due to use of alcohol				X	F 10
Cancers:					
Colon	x	x	X	X	C18
Lung		X			C34
Breast	x	X	х	X	C50
Prostate	x	x			C61
Esophageal				X	C15
Liver				X	C22

Outcomes

- Health gains:
 - decreased incidence
 - increased QALYs
 - increased DALYs

- health care
- municipality care
- sickness insurance

Effectiveness and costeffectiveness of a hypothetical population- based health promotion intervention tackling physical inactivity

Mass media campaign¹

• Effectiveness, calculated using change in distribution of physical activity, from RCTs^{2:}

 Δ = 2% - reduction in prevalence of physical inactivity

- Cost-effectiveness, RHS-model, Uppsala county
 - -Health gain: 14 QALYs
 - -Societal savings: £500,000

¹ Sassi, F. et al. (2009), OECD, No. 48 http://dx.doi.org/10.1787/220087432153

² Dixon et al., 1998; Foerster et al., 1995; Craig et al., 2006

Conclusion:

- The intervention is estimated as
 - Cost-effective if the intervention costs are less than £900,000 with ICER<£30,000 /QALY
 - Cost-saving if the intervention costs are less than £500,000

Cost-effectiveness of public health interventions:

- changes in the distribution curve of health-related outcomes (risk factor)
- population-based modeling of risk reductions, health outcomes and societal costs